
Page 1 / 22

1 Preparation of environment
 Before everything else please open our project in your Java Integrated Development

Environment:

1.1 Available instructions:

1.1.1 Configuration in IntelliJ:
This tutorial step by step is how to import existing eclipse's project to IntelliJ, so if You know how to

import, skip until section Exercise 0.

1. Let's run IntelliJ:

2. Let's unpack our package

3. Import Project

a. If somebody does not see that window importing can be selected: File->New-

>Project from Existing Sources:

Page 2 / 22

4. Choose path to unpacked project (it is possible to paste path to project), then OK:

Page 3 / 22

5. Choose "Import project from external model" and choose Eclipse, then Next:

6. In window "Select Eclipse projects directory" You can press just Next, or change something.

Page 4 / 22

7. You should see project:

select "Open Project Structure after import", then Next

8. In window "Choose project code style" You can press just Next, or change something.

9. In next window You probably will see possibility with selecting JDK, just press Finish.

Page 5 / 22

1.1.2 Running application in IntelliJ:
1. Choose Run -> Edit Configurations...

2. In a new window press +, then choose Application, and type in Main class and Program

arguments what You see below:

3. Press Run.

Page 6 / 22

4. When we will have problems with port we would have to use another port with argument: -

host 192.168.2.9 -port 12344

5. In other problems it can help if we download newest version of JADE framework:

http://jade.tilab.com/download/jade/

1.1.3 Configuration in Eclipse:
1. Let's run Eclipse:

2. Let's unpack our package

3. File ->Import

http://jade.tilab.com/download/jade/

Page 7 / 22

4. General -> Existing Project into Workspace -> Next:

Page 8 / 22

5. Browse button, in which we have to choose path of our unpacked archive and project, after

that press Finish:

Page 9 / 22

6. After that we should see project with four packages:

Page 10 / 22

2.1.1 Running application in Eclipse

Let's try to run project, if you see any problems please check:

1. if all libraries are properly added:

a. Project ->Properties

Page 11 / 22

b. Java Build Path ->Libraries:

c. If we don't have those libraries we have to add them manually

2. Our running configuration and program arguments are correct:

Page 12 / 22

a. Run ->Run Configurations ...

Page 13 / 22

b. Java Application ->New, main class should be jade.Boot

c. Arguments ->Program arguments, we need to add -gui:

d. We can also set some name different than New_configuration

e. When we will have problems with port we would have to use another port with

argument: -host 192.168.2.9 -port 12344

3. In other problems it can help if we download newest version of JADE framework:

http://jade.tilab.com/download/jade/

http://jade.tilab.com/download/jade/

Page 14 / 22

2 Exercise 0

2.1 The JADE Environment
What is JADE? JADE (Java Agent DEvelopment Framework) is a software Framework fully

implemented in the Java language. It simplifies the implementation of multi-agent systems through a

middle-ware that complies with the FIPA specifications and through a set of graphical tools that

support the debugging and deployment phases. It includes:

1. A runtime environment where JADE agents can “live” and that must be active on a given
host before one or more agents can be executed on that host.

2. A library of classes that programmers have to/can use (directly or by specializing them)
to develop their agents.

3. A suite of graphical tools that allows administrating and monitoring the activity of
running agents.

2.1.1 JADE GUI:

If everything is OK program's named RMA window should appear, after full expanding of

AgentPlatforms we will see "Main-Container" directory:

http://www.fipa.org/
http://jade.tilab.com/images/JADEscreenshot.jpg

Page 15 / 22

 For single JVM is connected single agent platform by default. Newly added agents are added

to already existing platform. At the picture below we can see Containers and Platforms:

 RMA is not agent platform. In order to close JADE (e.g. for recompiling purpose) in RMA we

have to click File ->Shut down Agent Platform. If we close RMA without closing platform we

have to manually kill processes from Eclipse.

Page 16 / 22

 Each running instance of the JADE runtime environment is called a Container as it can

contain several agents. The set of active containers is called a Platform. A single special Main

container must always be active in a platform and all other containers register with it as soon

as they start. It follows that the first container to start in a platform must be a main container

while all other containers must be “normal” (i.e. non-main) containers and must “be told”

where to find (host and port) their main container (i.e. the main container to register with).

 After running the platform we can see 3 already running agents:

o The RMA (Remote Monitoring Agent) allows controlling the life cycle of the agent
platform and of all the registered agents. The distributed architecture of JADE allows
also remote controlling, where the GUI is used to control the execution of agents and
their life cycle from a remote host.

o The AMS (Agent Management System) that provides the naming service (i.e. ensures
that each agent in the platform has a unique name) and represents the authority in
the platform (for instance it is possible to create/kill agents on remote containers by
requesting that to the AMS).

o The DF (Directory Facilitator) that provides a Yellow Pages service by means of which
an agent can find other agents providing the services he requires in order to achieve
his goals.

Please spend few minutes to explore RMA, because we are going to use its during rest of the day.

Page 17 / 22

2.2 Hello word
After selecting "Main-Container" please clik Actions ->Start New Agents in order to create new agent:

Then we have to type Agent name and choose agent's class name, in order to choose class we should

click ... then select kis.sspd.jade.exercise0.HelloWorld, after that we can create the agent by clicking

OK.

 What happened?

 What the agent is doing?

 What can we see in console?

 Let's kill our running agent (Actions ->Kill), what can we observe?

 Is it possible to kill one of 3 default agents?

 Is it possible to kill main container?

 Can we create multiple agents with the same name?

 Let's look to the HelloWorld agent's code.

2.3 Hello word2
Please run agent HelloWorld2

 What do we see in console just after creating the agent? What do we see after few seconds?

 Let's try to kill the agent manually

 Let's look to the HelloWorld agent's code.

Class Agent and all derived classes inherit few methods, e.g.:

Method Description Return value
setup() This protected method is an empty

placeholder for application specific

startup code.

void

takeDown() This protected method is an empty

placeholder for application specific

cleanup code.

void

doDelete() Make a state transition from active, void

Page 18 / 22

suspended or waiting to deleted state

within Agent Platform Life Cycle,

thereby destroying the agent.
addBehaviour(Behaviour b) This method adds a new behaviour to the

agent.

void

More information in reference: http://jade.tilab.com/doc/api/index.html

3. Exercise 1

3.1 Agent behaviour and lifecycle - Forgetful

The actual job an agent has to do is typically carried out within “behaviours”. A behaviour represents

a task that an agent can carry out and is implemented as an object of a class that extends

jade.core.behaviours.Behaviour

Each class extending Behaviour must implement the action() method, that actually defines the

operations to be performed when the behaviour is in execution and the done() method (returns a

boolean value), that specifies whether or not a behaviour has completed and have to be removed

from the pool of behaviours an agent is carrying out.

Method Description Return value
action() Runs the behaviour. abstract void

done() Check if this behaviour is done. abstract boolean

http://jade.tilab.com/doc/api/index.html

Page 19 / 22

3.1.1 Agent lifecycle

 Agent lives until the method doDelete() is not called, even if pool of behaviours is empty.

 The only behaviour, which would return true by function done() are removed from the

pool

3.1.2 The Forgetful agent

Let's look to the agent's code.

 What can be returned by function done() in OneShotBehaviour? When it is going to be

removed from behaviour pool?

 What can be returned by function done() in CyclicBehaviour? When it is going to be

removed from behaviour pool?

Page 20 / 22

 What does it means for those behaviours?

 What would be the output of the agent in your opinion?

 Let's run the agent and check

 Uncomment the line myAgent.addBehaviour(new SingleBehaviour()); in class

CyclicBehaviour2

 Comment myAgent.addBehaviour(new SingleBehaviour()); in class

CyclicBehaviour1

 What is the output?

UML diagram of types of defined behaviours in JADE:

3.2 The Listener agent

 Run the Listener Agent

 Send do the running agent message: Actions ->Send Message

 Check the processor usage

 Add one more listener agent and check usage now

Page 21 / 22

 Check usage after killing them both softly

 Add the code below after the if-statement:

else {
 block();
}

 How does the CPU usage looks now?

 Let's add to the else-statement at the end line:

System.out.println("Blocked.");

 When exactly the agent is being blocked?

3.3 The Talker agent

 Run the Listener agent

 Run the Talker agent adding in field Arguments name of the running Listener agent.

 Let's take a look into code of both agents. What types of arguments are being sent to the

Listener agent

3.4 Way of communication

 One of the most important features that JADE agents provide is the ability to communicate

and interactions protocols. The communication paradigm adopted is the asynchronous message

passing. Each agent has a sort of mailbox (the agent message queue) where the JADE runtime posts

messages sent by other agents. Whenever a message is posted in the message queue the receiving

agent is notified. If and when the agent actually picks up the message from the message queue to

process it is completely up to the programmer however. All received messages are being hold in FIFO

queue, but it is available mechanism to search in the queue with patterns. Messages are objects

containing lots of information and having many methods to help communicate (more details soon).

4 Exercise 2
 Run the PingPong agent

 Take a look to the source code of all tree agents: Ping, Pong, PingPong

 How they communicate?

 How new agents are being created? Who is their creator?

 What would happen (or rather not) if we don't call the start() method

Page 22 / 22

Bibliography:
 JADE home page: http://jade.tilab.com

 JADE official tutorial from which many sentences are copied:

http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf

 Another JADE tutorial, which added some information to the document:

http://jade.tilab.com/doc/administratorsguide.pdf

 Robert's tutorial in polish

http://jade.tilab.com/
http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf
http://jade.tilab.com/doc/administratorsguide.pdf

